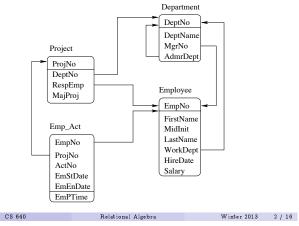
Relational Algebra

Tamer Özsu

David R. Cheriton School of Computer Science University of Waterloo

CS 640


Principles of Database Management and Use Winter 2013

Relational Algebra

Winter 2013 1 / 16

Notes

Database Schema Used in Examples

- ullet the relational algebra consists of a set of operators
- relational algebra is closed
 - each operator takes as input zero or more relations
 - each operator defines a single output relation in terms of its input relation(s)
 - relational operators can be composed to form expressions that define new relations in terms of existing relations.
- Notation:

 ${\cal R}$ is a relation name; ${\cal E}$ is a relational algebra expression

Notes			
notes			

CS 640 Relational Algebra Winter 2013 3 / 16

Notes			

Primary Relational Operators

• Relation Name: R

• Selection: $\sigma_{condition}(E)$

- ullet result schema is the same as E's
- \bullet result instance includes the subset of the tuples of E that each satisfies the condition
- Projection: $\pi_{attributes}(E)$
 - result schema includes only the specified attributes
 - result instance could have as many tuples as E, except that duplicates are eliminated

CS 640

Relational Algebra

Winter 2013 4 / 16

Notes

Primary Relational Operators (cont'd)

- Rename: $\rho(R(\overline{F}), E)$
 - ullet is a list of terms of the form $\mathit{oldname} o \mathit{newname}$
 - returns the result of E with columns renamed according to \overline{F} .
 - ullet remembers the result as R for future expressions
- Product: $E_1 \times E_2$
 - ullet result schema has all of the attributes of E_1 and all of the attributes of E_2
 - result instance includes one tuple for every pair of tuples (one from each expression result) in E_1 and E_2

 - sometimes called cross-product or Cartesian product renaming is needed when E_1 and E_2 have common attributes

CS 640

Relational Algebra

Winter 2013 5 / 16

Cross Product Example

R

AAA	BBB
a_1	b_1
a_2	b_2
a_3	b ₃

~	
CCC	DDD
c_1	d_1
c_2	$\mid d_2 \mid$

 $R \times S$

AAA	BBB	CCC	DDD
a_1	b_1	c_1	d_1
a_2	b_2	c_1	d_1
a_3	b ₃	c_1	d_1
a_1	b_1	c_2	d_2
a_2	b_2	c_2	d_2
a_3	b ₃	c_2	d_2

lot es			
10162			
ot es			
	 	 	

Select, Project, Product	Examples
--------------------------	----------

- Note: Use Emp to mean the Employee relation, Proj the project
- Find the last names and hire dates of employees who make more than \$100000.

 $\pi_{\textit{LastName}, \textit{HireDate}}(\sigma_{\textit{Salary}>100000}(\textit{Emp}))$

• For each project for which department E21 is responsible, find the name of the employee in charge of that project.

 $\pi_{\textit{ProjNo},\textit{LastName}}(\sigma_{\textit{DeptNo}=E21}(\sigma_{\textit{RespEmp}=\textit{EmpNo}}(\textit{Emp} \times \textit{Proj})))$

CS 640

Relational Algebra

Winter 2013 7 / 16

Notes

Joins

- Conditional join: $E_1 \bowtie_{condition} E_2$
 - equivalent to $\sigma_{condition}(E_1 \times E_2)$
 - special case: equijoin

 $Proj \bowtie_{(\mathtt{RespEmp} = \mathtt{EmpNo})} Emp$

- Natural join $(E_1 \bowtie E_2)$
 - The result of $E_1 \bowtie E_2$ can be formed by the following steps
 - f 1 form the cross-product of E_1 and E_2 (renaming duplicate attributes)
 - 2 eliminate from the cross product any tuples that do not have matching values for all pairs of attributes common to schemas E_1 and E_2
 - 3 project out duplicate attributes
 - if no attributes in common, this is just a product

CS 640 Relational Algebra Winter 2013 8 / 16

Notes				

Example: Natural Join

- Consider the natural join of the Project and Department tables, which have attribute DeptNo in common
 - the schema of the result will include attributes ProjName, DeptNo, RespEmp, MajProj, DeptName, MgrNo, and AdmrDept
 - · the resulting relation will include one tuple for each tuple in the Project relation (why?)

CS 640 Relational Algebra Winter 2013 9 / 16

Set-Based Relational Operators

- Union $(R \cup S)$:

 - schemas of R and S must be "union compatible"
 result includes all tuples that appear either in R or in S or in both
- - ullet schemas of R and S must be "union compatible"
 - result includes all tuples that appear in \hat{R} and that do not appear in S
- Intersection $(R \cap S)$:
 - ullet schemas of R and S must be "union compatible"
 - \bullet result includes all tuples that appear in both R and S
- Union Compatible:
 - Same number of fields.
 - 'Corresponding' fields have the same type

CS 640 Relational Algebra

Winter 2013 10 / 16

Relational Division

X		
A	В	C
a_1	b_1	c_1
a_1	b_1	c_2
a_1	b_2	c_2
a_2	b_1	c_1
a_2	b_1	c_2
a_2	b_2	c_2
a_2	b ₃	c ₃
a_3	b_1	c_1

CS 640

Relational Algebra

Winter 2013 11 / 16

Notes

Notes

Division is the Inverse of Product

S В \overline{C} b_1 c_1 b_1 c_2 c_2

R $ imes$	S	
A	В	C
a_1	b_1	c_1
a_1	b_1	c_2
a_1	b_2	c_2
a_2	b_1	c_1
a_2	b_1	c_2
a_2	b_2	c_2

(R imes S)/S
Α
a_1
a_2

Notes			

Summary of Relational Operators

$$\begin{array}{lll} E & ::= & R \\ & | & \sigma_{condition}(E) \\ & | & \pi_{attributes}(E) \\ & | & \rho(R(\overline{F}), E) \\ & | & E_1 \times E_2 \\ & | & E_1 \bowtie condition \ E_2 \\ & | & E_1 \bowtie E_2 \\ & | & E_1 \cup E_2 \\ & | & E_1 \cap E_2 \\ & | & E_1 - E_2 \\ & | & E_1 / E_2 \end{array}$$

CS 640

Relational Algebra

Winter 2013 13 / 16

Notes

Notes

Algebraic Equivalences

• This:

 $\pi_{\textit{ProjNo}, \textit{LastName}}(\sigma_{\textit{DeptNo}=E21}(\sigma_{\textit{RespEmp}=EmpNo}(E\times P)))$

• is equivalent to this:

 $\pi_{ProjNo,LastName}(\sigma_{DeptNo=E21}(E \bowtie_{RespEmp=EmpNo} P))$

• is equivalent to this:

 $\pi_{ProjNo,LastName}(E \bowtie_{RespEmp=EmpNo} \sigma_{DeptNo=E21}(P))$

• is equivalent to this:

$$\begin{aligned} \pi_{\textit{ProjNo},\textit{LastName}}(& (& \pi_{\textit{LastName},\textit{EmpNo}}(E)) \bowtie_{\textit{RespEmp}=\textit{EmpNo}} \\ & (& \pi_{\textit{ProjNo},\textit{RespEmp}}(\sigma_{\textit{DeptNo}=\textit{E21}}(P)))) \end{aligned}$$

CS 640

Relational Algebra Winter 2013 14 / 16

Relational Completeness

Definition (Relationally Complete)

A query language that is at least as expressive as relational algebra is said to be relationally complete.

Languages that are relationally complete:

- Relational Algebra
- Query by Example (QBE)
- SQL
 - SQL has additional expressive power because it captures duplicate tuples, unknown values, aggregation, ordering, ...
- etc.

Discussion Next Week

Topic: SQL (SEQUEL2) and QBE

Read:

• D.D. Chamberlin et al.: SEQUEL 2: A Unified Approach to

Data Definition, Manipulation, and Control. IBM Journal of Research and Development 20(6): 560-575 (1976). • M.M. Zloof: Query-by-Example: A Data Base Language. $IBM\ Systems\ Journal\ 16\,(4)\colon 324\text{-}343\ (1977).$ CS 640 Relational Algebra Winter 2013 16 / 16 Notes Notes

Notes