The Relational Model

A Formal View on the RM, Basics of Functional Dependency Theory

Olaf Hartig

David R. Cheriton School of Computer Science University of Waterloo

CS 640 Principles of Database Management and Use Winter 2013

Some of these slides are based on a slide set provided by M. T. Öszu.

C	Q.	64	n

Relational Model II Winter 2013 1 / 21

Notes			

Outline

- 1 Motivation
- Basics
- 3 Defining Functional Dependencies
- A Reasoning about Functional Dependencies
- 5 Summary and Outlook

CS 640

Relational Model II

Winter 2013 2 / 21

Notes

Problems due to Badly Designed Schemas

${\bf ProfLectures}$

ProfID	Name	Rank	Room	LecID	Title	Hours
2125	Sokrates	C4	226	4052	Ethics	2
2132	Popper	С3	52	5041	Logics	4
2132	Popper	С3	52	5259	Databases	4
2238	Platon	C4	221	?	?	?

Redundancies: Information about Popper appears multiple times (and, thus, wastes storage space and may cause anomalies)

Update Anomalies: Raising Popper's rank requires multiple changes Delete Anomalies: Deleting the Ethics course deletes information about Sokrates

Insert Anomalies: Inserting Platon without a lecture?

(Notice, SQL NULL is unsuitable: Is it unknown whether

Platon ha	as a lecture or unknown w	what the lecture is?)	
CS 640	Relational Model II	Winter 2013	3 / 21

Not es				
Notes				
Not es				
Not es				
Notes				
Not es				
Notes				
Not es				
Not es				
NOTES	Motor			
	notes			

Designing Good Databases

- Relations should have semantic unity
- Information repetition and change anomalies should be avoided
- Avoid NULL as much as possible
 - Certainly avoid excessive NULLs
- Avoid unnecessary joins

Can we approach this problem more systematically?

Goals

- A methodology for evaluating schemas (detecting anomalies).
- A methodology for transforming bad schemas into good schemas (repairing anomalies).

CS 640

Relational Model II

Winter 2013 4 / 21

Notes

Basic Definitions

Universe: \mathcal{DOM} denotes the set of all possible values. Attributes: $\mathcal U$ denotes the set of all possible attributes.

Each attribute $A \in \mathcal{U}$ has a domain $dom(A) \subseteq \mathcal{DOM}$.

Tuple: A tuple on a set of attributes $R = \{A_1, \ldots, A_k\}$ is a mapping

$$u:R o ig(\mathrm{dom}(A_1)\cup\ldots\cup\mathrm{dom}(A_k)ig)$$

such that $u(A) \in dom(A)$ for all $A \in R$.

Relation: A relation instance on a set of attributes $R = \{A_1, \dots, A_k\}$ is a set of tuples on R.

CS 640

Relational Model II

Winter 2013 5 / 21

Notes

Basic Definitions (Example)

 ${\bf Publication}$

PubID	Title
3	Mathematical Logic
153	Query Languages
1	Database Systems

Example Schema: Publication = $\{PublD, Title\}$ with

- dom(PubID) = Int
- dom(Title) = Str

(where \dot{Int} and Str denote the sets of all integers and of all strings, respectively)

Example Instance: $I = \{u, v, w\}$ with

- $u({\sf PubID})=3$ and $u({\sf Title})="{\sf Mathematical Logic"}$
- v(PublD) = 153 and v(Title) = "Query Languages"
- w(PublD) = 1 and w(Title) = "Database Systems"

Notes			

Some Further Notation

Let u be a tuple on a set of attributes R and let $X \subseteq R$. Then

u[X]

denotes the restriction of u to X. Hence, u[X] is a tuple on X.

Example:

	PubID	Title		PubID	
u:	3	Mathematical Logic	 $u\left[\left\{ PubID ight\} ight]$:	3	

- Suppose u is a tuple on Publication = {PublD, Title} with u(PubID) = 3 and u(Title) = "Mathematical Logic".
- Let $u' = u[\{PubID\}]$.
- Then, still u'(PublD) = 3 but u'(Title) is undefined.

CS 640 Relational Model II

Winter 2013 7 / 21

Notes

Keys Revisited

Superkey: a set of attributes for which no pair of distinct tuples in the relation will ever agree on the corresponding values

Definition

Let R be a set of attributes and let $X \subseteq R$. X is a superkey of R, if for any pair of tuples u, v on R it holds:

If $u \neq v$, then $u[X] \neq v[X]$.

(Candidate) Key: a minimal superkey

Definition

Let R be a set of attributes and let $X \subseteq R$. X is a key of R, if:

- 1 X is a superkey of R, and
- ② For all $Y \subset X$: Y is not a superkey of R.

Primary Key: a designated candidate key

CS 640 Relational Model II

Winter 2013 8 / 21

Functional Dependencies Revisited

Functional Dependency (informally): $X \rightarrow Y$ requires that if two tuples agree on the values for attributes in \boldsymbol{X} , they must also agree on the values for attributes in Y.

Example:

ProfID	Name	Rank	Room	LecID	Title	Hours
2125	Sokrates	C4	226	4052	Ethics	2
2132	Popper	C3	52	5041	Logics	4
2132	Popper	C3	52	5259	Databases	4

 $\{ProfID\} \rightarrow \{Name, Rank, Room\}$

Some Terminology

- X functionally determines Y (or, simply X determines Y),
- Y functionally depends on X (or, simply Y depends on X).
- The f

iunctional dep	pendency is trivial if Y	= X.	
S 640	Relational Model II	Winter 2013	9 / 21

Notes			

Notes			

Functional Dependencies Revisited (cont'd)

Functional Dependency (informally): $X \to Y$ requires that if two tuples agree on the values for attributes in X, they must also agree on the values for attributes in Y.

Definition

We call

$$X \rightarrow Y$$

a functional dependency over a set of attributes R, if $X, Y \subseteq R$.

A relational instance I on R satisfies this functional dependency if for any pair of tuples $u \in I$ and $v \in I$ it holds:

If
$$u[X] = v[X]$$
, then $u[Y] = v[Y]$.

CS 640

Relational Model II

Winter 2013 10 / 21

Notes

Functional Dependencies (Example)

ProfLectures

ProfID	Name	Rank	Room	LecID	Title	Hours
2125	Sokrates	C4	226	4052	Ethics	2
2132	Popper	C3	52	5041	Logics	4
2132	Popper	C3	52	5259	Databases	4

 $\{ProfID\} \rightarrow \{Name, Rank\}$

 $\{\mathsf{ProfID}\} \to \{\mathsf{Room}\}$

 $\{\mathsf{LecID}\} \to \{\mathsf{Title}, \mathsf{Hours}\}$

 $\{\mathsf{LecID}\} o \{\mathsf{Title}\}$

CS 640

Relational Model II

Winter 2013 11 / 21

Sets of Functional Dependencies

Definition

Let $\Sigma = \{\sigma_1, \ldots, \sigma_n\}$ be a set of FDs over attribute set R, and let I be a relational instance on R. I satisfies Σ , if I satisfies all $\sigma \in \Sigma$.

Definition

Let Σ be a set of FDs over attribute set R, and let σ be an FD over R.

 Σ implies σ , denoted by

 $\Sigma \models \sigma$,

if any relational instance I on R that satisfies Σ , also satisfies σ .

Example: Let $\Sigma = \{\{\text{ProfID}\} \rightarrow \{\text{Name}, \text{Room}\}, \{\text{Room}\} \rightarrow \{\text{Building}\}\}.$

- Then, it is trivial to see: $\Sigma \models \{\mathsf{ProfID}\} \rightarrow \{\mathsf{Room}\}.$
- But it also holds that $\Sigma \models \{ProfID\} \rightarrow \{Building\}.$

How do we know what are all the additional FDs that are implied?

CS 640 Relational Model II Winter 2013 12 / 21

Notes			
Notes			
110000			

Closure of FD Sets

Definition

Let Σ be a set of FDs over attribute set R.

The closure of Σ , denoted by Σ^+ , is the set of all FDs that are satisfied by every relational instance on R that satisfies Σ .

$$\Sigma^+ := \{ \sigma \mid \Sigma \models \sigma \}$$

Properties:

- $\Sigma \subset \Sigma^+$
- Σ^+ includes all those FDs over R that are trivial.
- $(\Sigma^+)^+ \equiv \Sigma^+$

Relationship to keys:

• Suppose (R, Σ) is a relational schema (i.e. Σ are FDs over R). $X\subseteq R$ is a superkey of this schema if and only if $X\to R\in \Sigma^+$.

Relational Model II

Winter 2013 13 / 21

Notes

Reasoning About FDs

Logical implications can be derived by using inference rules called Armstrong's rules

Reflexivity: $Y \subseteq X \implies X \to Y$ Augmentation*: $X \rightarrow Y \implies XZ \rightarrow YZ$ Transitivity: $X \rightarrow Y$, $Y \rightarrow Z \implies X \rightarrow Z$

*We use XY as a short form for $X \cup Y$.

These rules are:

- sound (anything derived from Σ is in Σ^+) and
- complete (anything in Σ^+ can be derived from Σ).

Additional rules can be derived:

Union: $X \to Y$, $X \to Z \Longrightarrow X \to YZ$ Decomposition: $X \rightarrow YZ \implies X \rightarrow Y$

CS 640 Relational Model II

Winter 2013 14 / 21

Notes

Reasoning About FDs (Example)

$$\begin{split} \text{Let } \Sigma = \left\{ & \quad \{ \text{SIN, PNum} \} \rightarrow \{ \text{Hours} \}, & \quad 1 \\ & \quad \{ \text{PNum} \} \rightarrow \{ \text{PName, Loc} \}, & \quad 2 \\ & \quad \{ \text{Loc, Hours} \} \rightarrow \{ \text{Allowance} \} & \}. & \quad 3 \end{split} \right.$$

A derivation of $\{SIN, PNum\} \rightarrow \{Allowance\}$:

$$\begin{array}{ccc} using \ reflexivity \colon & \{SIN,PNum\} \rightarrow \{PNum\} & 4 \\ using \ transitivity \ of \ 4 \ and \ 2 \colon & \{SIN,PNum\} \rightarrow \{PName,Loc\} & 5 \\ using \ decomposition \ of \ 5 \colon & \{SIN,PNum\} \rightarrow \{Loc\} & 6 \\ using \ union \ of \ 1 \ and \ 6 \colon & \{SIN,PNum\} \rightarrow \{Hours,Loc\} & 7 \\ using \ transitivity \ of \ 7 \ and \ 3 \colon & \{SIN,PNum\} \rightarrow \{Allowance\} & 8 \\ \end{array}$$

 $Y \subset X \implies X \to Y$ Reflexivity: $X \rightarrow Y \implies XZ \rightarrow YZ$ Augmentation: Transitivity: X
ightarrow Y , $Y
ightarrow Z \implies X
ightarrow Z$ Union: $X \rightarrow Y, X \rightarrow Z \Longrightarrow X \rightarrow YZ$ $X \rightarrow YZ \implies X \rightarrow Y$ Decomposition:

CS 640 Relational Model II Winter 2013 15 / 21

Notes			

Using the Closure of FD Sets?

Now we know how to compute Σ^+ .

Hence, we could use a set of FDs to compute a key.

(Recall:

• Suppose (R, Σ) is a relational schema (i.e. Σ are FDs over R). $X\subseteq R$ is a superkey of this schema if and only if $X o R\in\Sigma^+$.)

Unfortunately, computing Σ^+ is intractable (the size of Σ^+ is exponential in the number of attributes).

Hold on, not all is lost...

CS 640

Relational Model II

Winter 2013 16 / 21

Attribute Closure

Definition

Let Σ be a set of FDs over attribute set R, and let $X \subseteq R$.

The attribute closure of X w.r.t. Σ , denoted by $cl_{\Sigma}(X)$, is the maximum set of attributes functionally determined by X.

$$\mathit{cl}_\Sigma(X) := ig\{ A \, \Big| \, \Sigma \models X
ightarrow \{A\} ig\}$$

Theorem: $X \to Y \in \Sigma^+$ if and only if $Y \subseteq cl_{\Sigma}(X)$.

 $\operatorname{\mathit{cl}}_\Sigma(X)$ can be computed in polynomial time...

CS 640

Relational Model II

Winter 2013 17 / 21

Computing Attribute Closures

function
$$ComputeAttrClosure(X,\Sigma)$$
 begin $X^+:=X;$ while there exists an FD $(Y \to Z) \in \Sigma$ such that (i) $Y \subseteq X^+$, and (ii) $Z \not\subseteq X^+$ do $X^+:=X^+\cup Z;$ end while; return $X^+;$ end

Votes			
Notes			
Notes			

Computing Attribute Closures (Example)

```
Let R = \{SIN, PNum, EName, PName, Loc, Allowance\}
and \Sigma = \{ SIN \} \rightarrow \{ EName \},
               \{PNum\} \rightarrow \{PName, Loc\},\
                                                      2
               \{Loc, Hours\} \rightarrow \{Allowance\} 3
Compute cl_{\Sigma}(\{PNum, Hours\}):
               initially: X^+ = \{PNum, Hours\}
                using 2: X^+ = \{PNum, Hours, PName, Loc\}
                using 3: X^+ = \{PNum, Hours, PName, Loc, Allowance\}
          while there exists an FD (Y 	o Z) \in \Sigma such that
                   (i) Y \subseteq X^+, and (ii) Z \not\subseteq X^+ do
               X^+ := X^+ \cup Z;
           end while;
```

Relational Model II

Winter 2013 19 / 21

110000		
-		

Notes

Notes

Summary

CS 640

- Basic structural elements:
 - relation scheme, attributes, attribute domains
 - relation instance, tuples, attribute values
- Primary key constraints (superkey, candidate key, primary key)
- Functional dependencies
- Using the attribute closure (and algorithm ComputeAttrClosure)
 - efficiently test implication (i.e. given a set Σ of FDs and an FD $\sigma,$ does $\Sigma \models \sigma \text{ hold?}$)
 - and therefore we can efficiently compute all candidate keys.

Relational Model II Winter 2013 20 / 21

Outlook

Recall:

Goals

- 1 A methodology for evaluating schemas (detecting anomalies).
- A methodology for transforming bad schemas into good schemas (repairing anomalies).
- 1 Normal forms
- 2 Decomposition
- Moshe Y. Vardi: Fundamentals of Dependency Theory. In Trends in Theoretical Computer Science. ed. E. Borger, Computer Science Press (1987).

Notes			

CS 640 Relational Model II

Winter 2013 21 / 21