THE RELATIONAL DATA MODEL

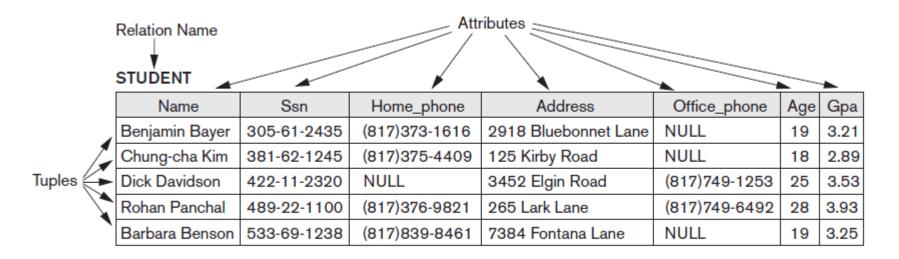
CHAPTER 3 (6/E)

CHAPTER 5 (5/E)

LECTURE OUTLINE

- Relational Model Concepts
- Relational Database Schemas
- Brief History of Database Applications (from Section 1.7)

RELATIONAL MODEL CONCEPTS


- Represent data as a collection of relations
 - Think of a relation as a table of values

	Relation Name		Attr	ributes		_	•
Tuples	Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
	Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21
	Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
	Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
	Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
	Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25

- Each row (tuple) represents a record of related data values
 - Facts that typically correspond to a real-world entity or relationship
- Each column (attribute) holds a corresponding value for each row
 - Columns associated with a data type (domain)
 - Each column header: attribute name

RELATIONAL MODEL (CONT'D.)

- Represent data as a collection of relations
 - Think of a relation as a table of values

- Schema describes table
 - Table name, attribute names and types
- Instance denotes the current contents of the table
 - The relation (or relation state)

MEANING OF A RELATION

Assertion

- Each tuple in the relation interpreted as a fact
- No other similar facts are of interest to the enterprise
- e.g., a relation Classlist includes only registered students and all registered students are included in Classlist
 - presence in list
 cregistered student

Predicate

- Values in each tuple interpreted as values that satisfy predicate
- e.g., Name of student having ID 83201556 is Lee Wong

DOMAINS

- Domain is a set of atomic values
 - { 0, 1, 2, ... }
 - { Jo Smith, Dana Jones, Ashley Wong, Y. K. Lee, ... }
- Atomic: Each value indivisible
- Domains specified by data type rather than by enumeration
 - Integer, string, date, real, etc.
 - Can be specified by format
 - e.g., (ddd)ddd-dddd for phone numbers (where d represents a digit)

SCHEMAS AND ATTRIBUTES

Relation schema

- A relation name R and a list of attributes A_1, A_2, \dots, A_n
- Denoted by $R(A_1, A_2, ..., A_n)$
- Attribute A_i
 - Name of a role in the relation schema R
 - Associated with a domain dom(A_i)
 - Attribute names do not repeat within a relation schema, but domains can repeat
- Degree (or arity) of a relation
 - Number of attributes n in its relation schema

FORMALIZATION

- Relation (or relation state)
 - Instance of relation schema $R(A_1, A_2, A_3, ..., A_n)$
 - Set $r = \{t_1, t_2, \dots, t_m\}$ of **n-tuples** (n is the degree of the relation)
 - Unordered
 - No duplicates
 - Each *n*-tuple *t*
 - Ordered list of *n* values $t = \langle v_1, v_2, ..., v_n \rangle$
 - Each value v_i (1 $\leq i \leq n$) is an element of dom(A_i)
 - Finite subset of the Cartesian product of the domains defining R
 - $rel(R) \subseteq (dom(A_1) \times dom(A_2) \times ... \times dom(A_n))$
- Because of updates, relations are time-varying
 - rel(R) is relation state at a given time
 - Reflects only (and all) the valid tuples that represent a particular state of the real world

RELATIONAL MODEL NOTATION

- Uppercase letters Q, R, S denote relation names
- Corresponding lowercase letters q, r, s denote corresponding relation states
- Uppercase letters A, B, C, ..., H denote attributes
 - Attribute A can be qualified with the relation name R to which it belongs using the dot notation
 - e.g., *R.A*
- Lower case letters t, u, v denote tuples

ALTERNATIVE DEFN OF RELATION

- Tuple considered as a function from attributes to values
 - $t_i: \{A_1, A_2, A_3, ..., A_n\} \to \text{dom}(A_1) \cup \text{dom}(A_2) \cup ... \cup \text{dom}(A_n)$
 - Use notation $t_i[A_i]$ or $t_i.A_i$ to refer to tuple's value v_i from dom (A_i)
 - Similarly, $t_j[A_u, A_w, ..., A_z]$ and $t_j(A_u, A_w, ..., A_z)$ refer to the sub-tuple of values $\langle v_u, v_w, ..., v_z \rangle$ from t_j for attributes $A_u, A_w, ..., A_z$
- Therefore, a tuple is a set of <attribute, value> pairs
- Example: attendee(id, givenName, surname, company, dateOfBirth)
 - t = <10483, John, Doe, IBM, 1978-11-05>
 - t[id] = 10483, t[givenName] = John, t[surname] = Doe, etc.
 - t.id = 10483, t.givenName = John, t.surname = Doe, etc.
 - t = { <id, 10483>, <givenName, John>, <surname, Doe>,
 <company, IBM>, <dateOfBirth, 1978-11-05> }

VALUES IN TUPLES

- Each value in a tuple is atomic
 - Flat relational model (as opposed to nested relational model)
 - Composite and multivalued attributes not allowed
- Composite attributes must be split into simple component attributes
 - e.g., <u>Waterloo, Ontario</u> treated as atomic or split into two attributes to store <u>Waterloo</u> separately from <u>Ontario</u>
- Multivalued attributes must be represented by separate relations
 - Recall: Director could be stored as attribute of FILM because only one director per film assumed, but multiple characters in a film implies that ROLE must have its own relation.

NULL VALUES

- Each domain may be augmented with a special value called NULL
 - Represent the values of attributes that may be unknown or may not apply to a tuple
- Interpretations for NULL values
 - Nothing is known about the value
 - Value exists but is (currently) not available
 - Value undefined (i.e., attribute does not apply to this tuple)
- If an attribute for a tuple is mapped to NULL, we cannot make any assumption about the value for that attribute (for that tuple)
 - e.g., Ashley's telephone number is NULL could mean
 - Ashley doesn't have a phone
 - Ashley has a phone but we don't know the number (perhaps withheld)
 - Ashley has a phone that has no number
 - Ashley may or may not have a phone, but regardless we don't have a number for Ashley

BRIEF HISTORY

- Relational model
 - Formulated by E.F.Codd (IBM) before 1970
 - First commercial implementations available in early 1980s
 - Predominant database model used today
- (earlier) Hierarchical and network models
 - Preceded the relational model
 - Pointer-based
 - Access relied on record-at-a-time navigation
- (later) Object-oriented applications and more complex databases
 - Object-relational model
 - Used in specialized applications: engineering design, multimedia publishing, manufacturing systems, etc.

RECENT HISTORY

- Interchanging data on the Web for e-commerce
 - Extended markup language (XML) primary standard for interchanging data among various types of DBs and Web pages
- Extending DB (and DBMS) capabilities for new applications
 - Extensions to support specialized requirements for applications
 - Enterprise resource planning (ERP)
 - e.g., SAP
 - Customer relationship management (CRM)
 - e.g., SAP
 - Enterprise content management (ECM)
 - e.g., Open Text
 - includes extensions to information retrieval (IR) to deal with documents (proposals, reports, news articles, etc.)

LECTURE SUMMARY

- Characteristics differentiate relations from ordinary tables or files
- Schemas vs. instances (states)
- Formal definitions for relations and tuples
- NULL values