DATABASE SECURITY

CHAPTER 24 (6/E)

CHAPTER 23 (5/E)

LECTURE OUTLINE

- Threats and countermeasures
- Access control mechanisms
- SQL grant and revoke
- Role of views

WHAT ARE THE THREATS?

- Loss of integrity
 - Improper modification of data
 - e.g., student changing grades for a class they are taking
- Loss of confidentiality
 - Unauthorized disclosure of data
 - e.g., student learns other students' grades
- Loss of availability
 - Unavailability of DB objects to authorized programs / people
 - e.g., "denial of service attack"

WHO IS TRYING TO MESS WITH US?

- Outsiders
 - Amateurs, "Script kiddies", Crackers
 - Corporate competitors
 - Organized crime
 - Government "cyberwarriors"
 - Terrorists
- Insiders
 - Disgruntled, bribed, or naïve employees
- Accidental misuse

ASPECTS OF DB SECURITY

- Legal and ethical compliance / business rules
 - Requirements to maintain accurate information
 - Requirements to disclose information to appropriate people
 - Requirements to not disclose information to inappropriate people
- Where will security be enforced?
 - by the physical environment?
 - by locked doors? by armed guards?
 - by the hardware?
 - by the software?
 - by the OS? by the DBMS? by applications programs?
 - DBMS includes security subsystem
- Levels of security
 - Access / no access
 - Partial access
 - Limited authorizations
 - Authorizations based on user role, time of day, location, etc.
 - Emergency access

COUNTERMEASURES

- Access control
 - Limiting access to the database (or parts of the database)
 - Requires authentication (e.g., through login and password)
 - Usually includes auditing (i.e., logging DB operations by each user)
- Inference control
 - Preventing deductions about database content
 - Access to summary data without ability to determine individuals' data
- Flow control
 - Keeping information from being transferred illegitimately
 - Control over covert channels
- Encryption
 - Protecting sensitive data (in particular, when transmitted via network)
 - Making information unintelligible unless authorized
 - Making changes traceable to source
 - Requires digital keys and key maintenance

ACCESS CONTROL MECHANISMS

- Discretionary access control (DAC)
 - Granting specific users access to specific data in specific ways
 - e.g., "permit John Smith to insert employees into Employee table"
- Role based access control (RBAC)
 - Users assigned roles
 - Roles entitled to specific permissions on specific data
 - e.g., "emergency physician can update any patient record"
- Mandatory access control (MAC)
 - Users / roles and data classified in various security classes
 - User's / role's security clearance must match data's security class
 - Bell-LaPadula Model
 - No read-up (to protect data); e.g., user must have sufficiently high clearance to read top secret data
 - No write-down (for flow control); e.g., person with high clearance cannot update unclassified object

DAC SUPPORT IN SQL

- Keywords GRANT and REVOKE
- If user A1 (who owns table Employee) wants to allow user A4
 to update only the salary attribute of Employee, A1 can issue

```
GRANT UPDATE ON Employee (salary) TO A4;
```

or

```
GRANT UPDATE ON Employee (salary) TO A4 WITH GRANT OPTION;
```

(WITH GRANT OPTION enables A4 to grant the same privilege to others)

To undo an earlier grant, A1 can issue

```
REVOKE SELECT ON Employee FROM A3;
```

- A3 can no longer read Employee
 - unless also granted by other user
- Revocation also propagates to other users granted privilege by A3

GRANULARITY OF PRIVILEGES

- Object
 - Table (or view) vs. column
 - SELECT, INSERT, DELETE, and ALTER are not column specific
 - UPDATE and REFERENCES privileges can specify columns
 - SQL does not support tuple-specific privileges
- System
 - Create, alter, drop tables, views, etc.
 - Creator of object gets all (object) permissions on that object

DAC MODEL: ACCESS CONTROL MATRIX

- Rows represent subjects (users, accounts, programs)
- Columns represent objects (relations, records, columns, views, operations)
- Entry M(i,j) represents privileges that subject i holds on object j
 - Includes who granted the privilege (to support revocation)
- e.g., privileges $\subseteq \{\underline{s} \text{ elect}, \underline{i} \text{ nsert}, \underline{d} \text{ elete}, \underline{u} \text{ pdate}, \dots \}$, **bold** \Longrightarrow grant option

	Employee	Department	Dept_locations	Project	Works_on	Dependent
Ashley	sidu (sys)	sidu (sys)	sidu (sys)	sidu (sys)	sidu (sys)	
Bobbie	s (Ashley)	s (Ashley)	s (Ashley, Eddie) idu (Ashley)			sidu (sys)
Charlie	s (Ashley)			s (Ashley)	s (Ashley)	
Dana	s (Ashley, Charlie)					s iu (Bobbie)
Eddie	s (Ashley)	siu (Ashley)	s iu (Ashley)			
Lee	s (Eddie, Charlie)					s (Dana)

VIEWS FOR SECURITY

- View selects some rows and columns from one or more tables
 - Other data values are inaccessible through view

Grant privileges on view without granting privileges on base tables

```
GRANT SELECT ON SalesStaff TO Smith;
```

- Can only access data in view
 - Similar for insert, delete, update
- Other base data is protected

LECTURE SUMMARY

- Overview of database security
 - Threats and countermeasures
- Discretionary Access Control
 - SQL's grant and revoke
 - Security through views